Knowledge Quizzes GCSE Chemistry

Tips:

- Learn one quiz at a time. Cover the right hand side and go through each question, checking the answers as you go.
- Get a friend or family member to quiz you in random order
- When you are feeling confident, cover the right side and write the answers to all the ones you can, then check.

Atomic model

Question	Answer
1. What is an element?	A substance that contains only one type of
	atom
2. What is a compound?	A substance that contains 2 or more
·	elements chemically bonded together
3. What is a mixture?	A substance containing 2 or more elements
	or compounds that are not joined together
4. What method would you use to separate a mixture	Chromatography
of 2 or more dissolved substances?	. ,
5. What method would you use to separate a mixture	Filtering
of a liquid and an insoluble solid?	_
6. Ethanol and water mix together to form a solution	Distillation
– what method could be used to separate the two	
liquids?	
7. What was the 'plum pudding' model of the atom?	The atom consisted of a cloud of positive
	charge with electrons randomly scattered
	within it
8. Which atomic particle was discovered first?	Electron
9. What was the major change to the atomic model	The positive charge was contained in a very
that came from the 'alpha scattering' experiment?	small nucleus
10. Which particle did Chadwick discover?	Neutron
11. What is needed in order to change a scientific	New evidence
model and replace it with a new one?	
12. What is the charge on a proton?	+1
13. What is the charge on an electron?	-1
14. Why are atoms neutral overall?	They contain the same number of protons
	and electrons
15. What makes one element different from another?	They have different protons
16. What is the size of an atom?	1 x 10 ⁻¹⁰ m
17. How much smaller than the atom is the nucleus?	10 000 X
18. What is an isotope?	An atom with the same number of protons
	but different numbers of neutrons
19. How do you use the numbers on the periodic	Subtract the atomic number from the mass
table to calculate the number of neutrons in an	number
atom?	
20. What are the differences between the plum	Plum pudding had positive charge
pudding model and the nuclear model?	throughout the atom, nuclear has it within a
	small nucleus
	Plum pudding has randomly scattered
	electrons, nuclear model has them orbiting
	in shells
21. What is the mass of a proton?	1
22. What is the mass of a neutron?	1

Periodic Table

Question	Answer
1. What is used to order the elements in the modern	Atomic number / proton number
periodic table?	
2. What was used in early versions?	Atomic weight
3. What do all elements in the same group have in	Same number of electrons in the outer shell
common?	
4. What did Mendeleev do in his periodic table?	Left gaps for undiscovered elements
5. What do we call atoms with the same number of	Isotopes
protons but different numbers of neutrons?	
6. What do we call the elements that react to form	Metals
positive ions?	
7. What type of elements form negative ions?	Non-metals
8. Give 3 properties of metals	Conduct electricity, conduct heat, shiny when
	fresh cut
9. Give 3 properties of non-metals	Don't conduct electricity, low melting and boiling
	points, dull
10. Why are group 0 elements unreactive?	They have full outer shells so do not need to gain
	or lose any electrons
11. What happens to the melting and boiling points of	The melting and boiling points increase down the
group 0 as you come down the group?	group
12. What are the group 1 metals called?	Alkali metals
13. What happens to reactivity coming down group 1?	Reactivity increases down the group
14. Why does this happen?	The outer shell electron is further away from the
	nucleus and more shielded, so is more easily lost
15. What are the two products when a group 1 metal	An alkali and hydrogen gas
reacts with water?	
16. What can be added to the solution to prove an	Universal indicator
alkali has formed?	
17. What are the group 7 elements called?	Halogens
18. How many electrons are in their outer shells?	7
19. What happens to melting and boiling point coming	It increases
down group 7?	The week such a set bissess as the intermediation
20. Why does this happen?	The molecules get bigger, so the intermolecular
	forces are stronger and so it takes more energy to overcome the forces
21 What happens to reactivity coming down grown 72	
21. What happens to reactivity coming down group 7?	Reactivity decreases down the group The outer shall is more shielded and further away.
22. Why does this happen?	The outer shell is more shielded and further away, so it's harder to attract an electron into the outer
	shell
23. When a more reactive halogen is added to a	The more reactive halogen displaces the less
solution of a compound of a less reactive halogen,	reactive one
what happens?	Tredelive one
24. What sort of compounds do group 7 elements form	Ionic. White crystalline solids
with metals?	ionic. Write drystalline solids
26. Give two properties of transition metals	Harder than group 1, less reactive
27. Describe a property of transition metal compounds	They are often coloured compounds.
27. Describe a property of transition metal compounds	They are often coloured compounds.

Chemical Bonds

Question	Answer
1. What are the 3 types of bonds?	Ionic, covalent, metallic
2. What type of particles form ionic bonds?	Metals and non-metals
3. What is a covalent bond?	A shared pair of electrons
4. What type of particles form covalent bonds?	Non-metal atoms
5. What do the particles share in metallic bonding?	Delocalized electrons
6. Where is metallic bonding found?	Metals and alloys
7. What type of elements lose electrons to form positive ions?	Metals
8. What type of elements gain electrons to form negative ions?	Non metals
9. What type of force holds the ions together in the ionic lattice?	Electrostatic
10. Which group in the periodic table do ions resemble?	The noble gases
11. Name one problem with representing ionic lattices using this diagram: Key Na* CI	It looks like there is space between the ions
12. Name one problem with representing ionic lattices using this diagram:	The ions look like solid spheres
13. Name one problem with representing covalent molecules using this diagram:	The atoms look like solid spheres and they all look the same size
14. How would you use the diagram below to write the formula for the compound it represents?	Count the number of each type of atom and then use it to write the formula, eg C_2H_5OH
15. What is the problem with using a diagram like	There is no indication of the shape of the
the one below to represent covalent molecules? H—N—H H	molecule
16. What are the two types of covalent substance?	Simple molecular and giant
17. What holds metals together in metallic bonding?	Attraction between the metal ions and the delocalized electrons
18. What does the 'n' represent in polymer diagrams?	A large number

Bonding and properties

Question	Answer
1. What does an (s) in an equation mean?	Solid (insoluble)
2. What state of matter is represented by (I)?	Liquid
3. How would a gas be represented in an equation?	(g)
4. What two changes of state can happen at the melting point?	Melting and freezing
5. What two changes of state can happen at the boiling point?	Boiling and condensing
6. What does (aq) mean?	Aqueous solution – dissolved in water
7. What forces of attraction are found in ionic compounds?	Electrostatic
8. Why are the melting and boiling points of ionic compounds so	The electrostatic forces are strong so it takes lots
high?	of energy to overcome all of them in the ionic
	lattice
9. Name a limitation with using the particle model shown below:	There are no forces shown between the
PSS 2529 0	particles
	No movement is shown
	Particles are represented as solid spheres
Solid Liquid Gas	
10. Why are carbon dioxide and oxygen gases at room	Because their boiling point is lower than room
temperature?	temperature (they are simple covalent molecules)
11. Why do small molecules have low melting and boiling	The forces between the molecules are weak and
points?	don't need much energy to overcome
12. What happens to melting and boiling points as molecules get	They increase because the intermolecular forces
bigger and why is this?	get stronger
13. Why do simple covalent molecules not conduct electricity?	The molecules have no overall charge
14. What sort of bonding is found in polymers?	Covalent
15. Why are polymers normally solids at room temperature?	Because they are large molecules so the forces of
16. What cort of structures are diamond, graphite and silica	attraction are fairly strong Giant covalent structures
16. What sort of structures are diamond, graphite and silica examples of?	Giant covalent structures
17. Why do they have high melting and boiling points?	Lots of energy is needed to break all the strong
17. Willy do they have high merting and bonning points.	covalent bonds
18. What sort of bonding is found in metals like gold and silver?	Metallic
19. Why do metals conduct electricity?	Because they have delocalized electrons that are
251 VIII) do metalo conduct electrole).	able to move through the metal
20. Why are pure metals easily bent and shaped?	The layers of atoms are able to slide over each
	other easily
21. What is an alloy?	A mixture of metals
22. Why are alloys stronger than pure metals?	Because the layers are disrupted so they cannot
, , , , , , , , , , , , , , , , , , , ,	slide
23. How many other carbon atoms is each carbon bonded to in	4
diamond?	
24. Why is diamond hard?	Giant structure of very strong covalent bonds
25. How many bonds does each carbon make in graphite?	3
26. Why does graphite conduct electricity?	It has delocalized electrons that can move through
	the graphite
27. Why is graphite slippery?	Graphite is in layers and they are able to move
	over each other
28. What is graphene?	A single layer of graphite
29. What type of molecules is shown?	Fullerene
30. What type of structure is shown in the diagram:	nanotube

Reactions

Question	Answer
1. What is oxidation?	Combining with oxygen OR loss of electrons
2. What is reduction?	Loss of oxygen OR gain of electrons
3. What makes one metal more reactive than another?	How easily it forms an ion
4. Which element is used to extract less reactive metals	Carbon
from their ores?	
5. What are the products when metals react with acids?	Salt and hydrogen gas
6. What is produced when acids react with bases?	Salt and water
7. What is an alkali?	A soluble base – contains OH ⁻ ions
8. What type of salt is formed if hydrochloric acid is neutralized?	Chloride
9. What type of salt is formed if sulfuric acid is neutralized?	Sulfate
10. What type of salt is formed if nitric acid is	Nitrate
neutralized?	
11. How can soluble salts be obtained from solutions?	Crystallization / evaporation
12. Which particle makes a solution acidic?	H ⁺
13. Which particle makes a solution alkaline?	OH-
14. Write the ionic equation for neutralization	$H^+ + OH^- \rightarrow H_2O$
15. What is the range of pH in the pH scale?	0-14
16. How can pH be measured?	Using universal indicator or a pH probe
17. What is the pH of a neutral solution?	7
18. What is the pH of an acid?	0-6.9
19. What is the pH of an alkali?	7.1-14
20. What is a strong acid?	One that fully ionizes/dissociates in solution
21. Why do weak acids have higher pH than strong ones?	They do not fully dissociate in solution and
	weaker acids have a pH closer to 7
22. When the pH changes by 1, what is the change in H ⁺ ion concentration?	X 10

Q 23 –31 relate the equipment below which can be used to make copper chloride

23. Which acid should be used?	Hydrochloric (to give a chloride)
24. Why is the acid heated?	To speed up the reaction
25. Name a suitable base to neutralize the acid	Copper oxide or copper carbonate
26. Why can copper metal not be used?	Copper does not react with acids
27. Why is the base added in excess?	To make sure the acid is fully neutralized
28. How would you know when the base is in excess?	Solid collects at the bottom of the beaker
29. How could the excess base be removed?	Filter
30. How would the salt be obtained from the solution?	Crystallization / evaporation
31. Name a piece of equipment that the dish could be placed in to crystallise the solution safely	Drying oven

Electrolysis

Question	Answer
1. Why can ionic compounds conduct electricity when molten	The IONS can move
or in solution?	
2. Why can ionic compounds NOT conduct electricity when	The ions are unable to move as they are stuck in the
they are solids?	lattice
3. What is an electrolyte?	A solution or liquid that is able to conduct electricity
4. What is electrolysis?	Splitting (NOT separating) a compound using
	electricity
5. What is the name of the negative electrode?	Cathode
6. What is the name of the positive electrode?	Anode
7. What happens to positive ions at the cathode?	They gain electrons (reduced) to become atoms
8. What happens to negative ions at the anode?	They lose electrons (oxidized) to become atoms
9. What is the gain of electrons called?	reduction
10. Which metals are extracted by electrolysis?	Metals that are too reactive to be reduced using
	carbon
11. Why does electrolysis use a lot of energy?	Lots of energy is needed to melt ionic compounds
	and then the production of the electric current
12. Why is graphite used in the electrodes?	Because it has delocalized electrons that can move
	and so it conducts electricity
13. Why is cryolite added to aluminium oxide before	To lower the melting point
electrolysis?	
14. What is formed at the cathode in the electrolysis of	Aluminium
aluminium oxide?	
15. What is the product at the anode in the electrolysis of	Oxygen
aluminium oxide?	
16. Why do the anodes need to be continually replaced?	The oxygen produced reacts with the carbon
	electrodes to make carbon dioxide
17. What does (aq) mean?	Dissolved in water – an aqueous solution
18. Which ions are also present if an ionic compound is	H ⁺ and OH ⁻ ions
dissolved in water and then electrolysed?	
19. Why does hydrogen form at the cathode when solutions	If the metal in the solution is more reactive than
are electrolysed?	hydrogen, then hydrogen will be released
20. What is formed at the anode if solutions are electrolysed?	Oxygen or, if a halogen is present, the halogen
	(group 7 element)
21. What is the ionic equation for the formation of oxygen at	$4OH^{-} - 4e^{-} \rightarrow O_{2} + 2H_{2}O$
the anode?	

Questions 22-27 are about the following equipment, used to electrolyse a solution of copper sulphate

22. Complete the diagram to label the other electrode and to complete the supply of electricity	
23. Which ions are present in the solution?	Cu ²⁺ H ⁺ SO ₄ ²⁻ OH ⁻
24. What will be formed at the cathode and why?	Copper – as it less reactive than hydrogen
25. What will be formed at the anode and why?	Oxygen – there is no halogen present
26. Name a solution that could be used instead of copper	Potassium sulphate (substitute any metal that is
sulphate to produce hydrogen at the cathode	more reactive than copper)
27. Name a solution that could be used instead of copper	Copper chloride
sulphate to produce chlorine at the anode	

Endothermic and exothermic reactions

Question	Answer
1. What is activation energy?	The minimum amount of energy needed to get a
	reaction started
2. What is an exothermic reaction?	One in which energy is transferred to the surroundings
3. Give 3 examples of exothermic reactions	Combustion, neutralization, oxidation reactions
4. Give an everyday use of exothermic reactions	Self heating cans and hand warmers
5. What is an endothermic reaction?	One in which energy is transferred from the
	surroundings to the reaction
6. Give 2 examples of endothermic reactions	Photosynthesis, thermal decomposition
7. What is energy needed for in a reaction?	In order to break bonds in the reactants
8. When is energy released during a reaction?	When new bonds are made in the products
9. When is a reaction exothermic overall?	If more energy is released when bonds are made than
10. When would a reaction be endothermic overall?	was needed to break bonds
10. When would a reaction be endothermic overall?	When more energy was required to break bonds than was released when bonds were made
11. How do you use a bond energy table like the one	Add up the energy used in breaking bonds and
below to calculate the energy transferred?	subtract the amount of energy released when bonds
$H_{2(g)} + I_{2(g)} = 2HI(g)$	are made in the products, e.g:
Bond Average Bond Energy / kJmol-1	436 + 151 = 587 required 2 x 298 = 596 released
H-H + 436 I-I + 151 H-I + 298	587-596 = -9kJ
12. What type of reaction is represented by the diagram	Exothermic
shown:	
energy	
13. What type of reaction is represented by the diagram	Endothermic
shown:	
energy	
Reserving methods:	
14. Draw an arrow on the diagram to represent the	Do NOT just draw an arrow
activation energy	pointing to the tip of the slope
	– it should be from the level of
	Reaction pathway the reactants line
Questions 15 – 19 relate to the equipment below which ca	_
temperature change by testing 'The temperature change i	n the solution depends on the volume of sodium
hydroxide added'	
↓ ↓ ↓ ↓ ↓ · Thermoneter	
Folloy/tene aup	
15. Why is a polystyrene cup used for the reaction	To reduce energy transfers (don't say 'stop')
instead of a beaker? 16. How could operate losses be reduced further?	Put a lid on the cup
16. How could energy losses be reduced further?17. If the reaction is exothermic, what happens to the	Put a lid on the cup It will increase
temperature?	it will lite ease
18. A digital temperature probe can be used instead of a	a) It would increase the accuracy as the digital readout
thermometer. How could this affect the readings'	is easier to read
a) accuracy b) resolution	b) resolution could be increased if the probe can
2,122.00	measure to 1 or two decimal places
19. Name 3 control variables for the experiment	Concentration of both acid and alkali, volume of acid,
	starting temperature of the liquids (NOT the
	'temperature of the room')